1866

Faculty of Arts & Sciences

Department of Computer Science
CMPS 200—Introduction to Programming
Assignment 12 — Due Friday 1 (Nov. 5), 2014

Problem 1 Polygon

In this problem, you have to create two classes: Point and Polygon. The polygon class contains an array of
points. The details of class Point and Polygon are given below:

1.a. Point. Write a data type Point that implements the following API:

public class Point
Point(int x, int y)
double distance(Point p)

Point midPoint(Point p)
int getX()
int getY()

String toString()

Hint. Given two points p1(x1, y1) and p2(x2, y2), the distance between p1 and p2 is equal to:

\/()cl—xZ)2 +(y1-y2)* . The midpoint of p1 and p2 has coordinates: (5

X1+ x2 y1+y2)
2

1.b. Polygon. Write a data type Polygon that implements the following API:

public class Polygon

// Constructor. Create an array of points with size 1000, i.e., nb of points can be between 0 and 1000.
Polygon()

void addPoint(Point p) //add a point to the polygon
// Draw the polygon.
// Hint. You may use g.drawLine(double x0, double y0, double x1, double y1)
void draw(Graphics g)
// Create a polygon that consists of all the consecutive midpoints of the calling polygon
Polygon midPoints()
// Return the perimeter of the polygon that is equal to the sum of the consecutive lines’ distance.
double // i.e., distance between p1 and p2 + distance between p2 and p3 + ... + distance between last point and p1
perimeter()
String toString() //string representation such as (x1, y1)-(x2,y2)-(x3,y3)

In the Polygon class write the following main method that tests your implementation:

public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(100, 100);
Polygon polygon = new Polygon();

Point pl = new Point(10, 10); ® O O Drawin...
Point p2 = new Point(60, 190); File View Help
Point p3 = new Point(60, 60);

Point p4 = new Point(10, 690);

polygon.addPoint(pl);

polygon.addPoint(p2);

polygon.addPoint(p3);
polygon.addPoint(p4);
System.out.println(polygon); // prints (10,10)-(60,10)-(60,60)-(10,60)
System.out.println(polygon.perimeter()); // prints 200.0 (95, 3)

Polygon midPointsPolygon = polygon.midPoints();
polygon.draw(panel.getGraphics());
midPointsPolygon.draw(panel.getGraphics());

Introduction to Computer Programming (CMPS 200)

Problem 2 Bank

2.a. Write a java class Account that contains a definition for a simple bank account. Your class should
implement the API below (note: you may add any additional method that you see fit):

Class: Account

-id: int // positive integer between 0 and 10000
-name: String
-balance: double

Account(id, name, initialBalance); // constructor

Account(name); // constructor, where id is set randomly, balance is set to 0.0
withdraw(amount); // withdraws a specified amount from the account
deposit(amount); // deposits the specified amount to the account.

toString(); // string representation of the account

2.b. Write a java class Bank.java that simulates a set of bank accounts. Your class should contain an
array of accounts. This array is expanded as needed (in case of opening and closing an account). Your
class should implement the API below (add any class method that you see fit):

// constructor, from a file. Each line of the file contains account id, name, and
// initial balance, e.g.:

// 123 Shadi 1000

// 222 Samir 2000

public Bank(String fileName)

// Remove the account from the array given its id.
// The array must be resized. Returns false if the account id does not exist and true
// otherwise

public boolean close(int id)

//create a new account. The array must be resized. Returns false if the id already
// exists, true otherwise.

public boolean open(int id, String name, double balance)

// Transfer funds from one account to another given their ids. Returns true if the
// transfer is done successfully.

public boolean transfer(int idFrom, int idTo, double balance)

// returns a String representing the accounts

public String toString()

2.c. Write a program TestBank. java that prompts the user to enter a choice as shown in the sample
output below. You can enter: 1 for opening a new account; 2 for closing/removing an account; 3 for
checking the balance of a given account; 4 for withdrawing money from an account; 5 for deposing money
to an account; 6 for transferring money to another account; 7 for loading the accounts from a file (you
also need to input the file name); 8 for exit. Once exit, your program must display the information of all
the accounts.

Main Menu (l: Open - 2: Close - 3: Balance - 4: Withdraw - 5: Deposit -
6: Transfer - 7: Load - 8: Exit)

Enter a choice: 1

Enter the account info (id, name, initial balance): 10 Chadi 100

The account has been created successfully.

Fall 2014 20of3

Introduction to Computer Programming (CMPS 200)

Main Menu (l: Open - 2: Close - 3: Balance - 4: Withdraw - 5: Deposit -
6: Transfer - 7: Load - 8: Exit)

Enter a choice: 3

Enter the account id: 7

The balance is 100.0

Main Menu (l: Open - 2: Close - 3: Balance - 4: Withdraw - 5: Deposit -
6: Transfer - 7: Load - 8: Exit)

Enter a choice: 6

Enter idFrom, idTo, Balance: 7 10 100

The transfer has been done successfully.

Problem 1 Longest Sorted Sequence

Given a list of numbers stored in an input file, you have to output the longest sorted (i.e., increasing
order) sequence of integers in the list. For example, in the list below:

3, 8, 10, 1, 9, 14, -3, o, 14, 207, 56, 98, 12
the longest sorted sequence should be: -3, 0, 14, 207
Notice that the sequence may contain duplicates. For example, if the list of numbers is:
17, 42, 3, 5, 5, 5, 8, 2, 4, 6, 1, 19
the longest sorted sequence becomes: 3, 5, 5, 5, 8

Input Format
The input file starts with a number N indicating the number of integers in the list. The next line contains
the N numbers.

Output Format
Display the longest non-decreasing sorted sequence on the screen.

Sample Input file 1: Iss-1.in
13
381019 14 -3 0 14 207 56 98 12

Sample Output 1
LSS = -3, 0, 14, 207

Sample Input file 2: Iss-2.in
12
17 42 35558246119

Sample Output 2
LSS = 3, 5, 5, 5, 8

Submission Instructions

* As usual, submit your commented source code and sample runs in a zip file named s#_asst12_netid, where #
is your section number and net1id stands for your AUBnet user name.

Fall 2014 30of3

